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Fig. 1. Example subsurface temperature profiles for (a) a homogeneous

subsurface and (b) a layered subsurface. Each curve is a diurnal aver-

age temperature profile superimposed at 25 day intervals for a full mar-

tian year. Both cases are for 55◦ south latitude for a thermal inertia of
250 Jm−2 K−1 s−1/2 and an albedo of 0.25. For the layered case the ther-
mal inertia is increased at and below 50 cm to 2290 Jm−2 K−1 s−1/2 to
correspond to densely ice-cemented soil (see also Table 1). The magnitude

of the temperature oscillation is greatly reduced in the subsurface at and

near the ice table, by almost a factor of 5 in this example. Comparison of

the layered numerical calculations, using a fixed sinusoidal surface tem-

perature, to an analytical solution shows the uncertainty in the calculated

temperatures at the ice table is typically less than 0.04 K.

the subsurface mean vapor density is equal to that of the at-

mosphere. For an ice table above that equilibrium depth the

mean vapor density is higher, net sublimation will occur, and

the ice table will recede to greater depths. For an ice table be-

low that equilibrium depth the mean vapor density is lower

and net condensation of atmospheric water will occur raising

the ice table closer to the surface.

To map the depth distribution of the ice table we con-

ducted a suite of two-layer numerical simulations of the sub-

surface thermal behavior and mean subsurface vapor den-

sity for a grid of thermal inertias, albedos, latitudes, and

surface pressures for a set of discrete ice-table depths. We

then interpolate between this suite of simulations to cal-

Fig. 2. Mean water–vapor density with respect to ice in the soil pore space

for a soil subsurface of a homogeneous thermal conductivity (dotted line)

and of a layered conductivity (solid line). Both cases are for 55◦ south
latitude for a thermal inertia of 250 Jm−2 K−1 s−1/2 and an albedo of
0.25 (see also Fig. 1). For the layered case the thermal inertia is increased

at and below the ice-table depth to a value of 2290 Jm−2 K−1 s−1/2 to
correspond to densely ice-cemented soil (see also Table 1). For an exam-

ple atmospheric-vapor density of 3 × 1019 m−3 (corresponding to about
10 pr µm at 0 km elevation) the ice table is located at about 10 cm below

the surface, but is estimated at 6× deeper when the thermal properties of

ice-cemented soil are ignored.

culate the ice-table depth for each location on Mars. We

assumed a geographic distribution of thermal inertia of the

upper soil layer and a surface albedo fromMars Global Sur-

veyor TES observations binned at 1/20◦ per pixel (Mellon
et al., 2000, 2002; Christensen et al., 2001) with values from

Viking IRTM observations (Paige et al., 1994; Paige and

Keegan, 1994) for the polar regions > 80◦ latitude where
TES data are sparse and for selected areas between 70◦ and
80◦ north latitude where TES thermal inertia values remain
questionable (Mellon et al., 2002). For elevation we used

Mars Global Surveyor MOLA observations binned also to

1/20◦ per pixel. We assumed a dust opacity of 0.1 in the in-
frared at 6 mb normalized to the local elevation, with a scale

height of 10.8 km, consistent with TES-based observation

of mean atmospheric dust in the present climate (Smith et

al., 2001). For each map location the logarithm of the mean

vapor density at the ice table and the mean temperature are

interpolated across each grid axis as described by Mellon et

al. (2000) for each of 6 ice-table depths at 0, 0.05, 0.2, 0.5,

1, and 5 seasonal thermal skin depths. A seasonal skin depth

is the e-folding depth of the seasonal thermal wave given by

(kP )1/2(πρC)−1/2 or equally I (ρC)−1(P/π)1/2, where k

is the thermal conductivity, I is thermal inertia, ρ is density,

C is heat capacity, and P is the period. The grid we used

for thermal inertias, albedos, and pressures is given by Mel-

lon et al. (2000), which was chosen for optimally deriving

thermal inertia. For each map location we then fit a function

of the mean vapor density N at the ice-table depth Z of the
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P is period 
(diurnal or seasonal)

material δdiur δseas

dust 0.8 21.2
sand 2.7 70.2
crust 9.3 241.3
rock 20.1 520.6

cm

Thermal Inertia

I ≡
�

kρc
J m-2 K-1 s-1/2 ≡ tiu

5  10            100          1000    5000

rock/icesanddust

k bulk conductivity - varies by ∼ × 1000
ρc volume heat capacity - varies by ∼ × 6

⇒ On Mars, I  depends mostly on k

Thermal skin depth
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Conductivity, pressure, & grain size

Laboratory data from Masamune and Smith (1963)

Glass beads
Olympus   Mars   Hellas Everest   Flagstaff
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Conductivity, pressure, & grain size

Laboratory data from Masamune and Smith (1963)

Glass beads
Olympus   Mars   Hellas Everest   Flagstaff

DONʼT TRY THIS 
AT HOME
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Modeled diurnal temperatures

2AM 2PM

Putzig (2006)

At equator

sand

⇐ TES local times

rock/ice

dust

dawn dusk
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At equator At NP erg (80°N)

Dawn and dusk 
yield non-unique 

solutions for I
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⇐ TES local times

Modeled diurnal temperatures

LS = 0 LS = 140
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1 km

NASA/JPL/University of Arizona

HiRISE image
PSP_001736_2605
80.19°N, 168.77°W 
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1 km

NASA/JPL/University of Arizona

HiRISE image
PSP_001736_2605
80.19°N, 168.77°W 

“... Thomas and Weitz [1989] noted that the 
Viking color and albedo values derived for the 
north polar dunes do not differ significantly 
from dark dunes anywhere else on the planet.” 
Byrne and Murray (2002).
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Vasavada et al. 2000

Viking IRTM 
thermal inertia

From multiple 
temperatures fit to 
a homogeneous 

subsurface model

Values too low for 
normal basaltic sand
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J m-2 K-1 s-1/2 ≡ tiu
5  10            100          1000    5000

rock/icesanddust

8



+

N

Vasavada et al. 2000

Viking IRTM 
thermal inertia

From multiple 
temperatures fit to 
a homogeneous 

subsurface model

Values too low for 
normal basaltic sand

70°N

×Phoenix

J m-2 K-1 s-1/2 ≡ tiu
5  10            100          1000    5000

rock/icesanddust

8

“The dune material ... may be composed of smaller 
particles that have been aggregated by electrostatic 
forces, or some other cementing agent, into larger 
assemblages capable of transport by the circumpolar 
winds (Herkenhoff and Vasavada 1999).” 
Clifford et al. (2000).



Putzig and Mellon 2007

TES 2AM 
thermal inertia
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Putzig and Mellon 2007

TES 2AM 
thermal inertia
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“High local slopes within dunefields have been 
ignored in all thermal models, and the high emission 
angle of the Viking observations in this area makes 
it likely that thermal measurements have been 
dominated by the ‘hot’ side of these dunes. These 
two facts combined could possibly lead investigators 
to infer an incorrect value of thermal inertia.” 
Byrne and Murray (2002).



Derivation methods are too simplistic, 
so inferred grain size is incorrect.  

Material may actually be normal sand.
Models typically assume homogeneity within the 
instrument footprint (3 km for TES), ignoring:

near-surface layering
horizontal mixtures of materials
slope effects

Viking multi-point derivation and TES night-only 
analysis obfuscates the effects of heterogeneity.

Alternative explanation
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Putzig and Mellon 2007

TES 2AM 
thermal inertia
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×Phoenix

median of 
seasonal maps 
for LS 80—200 

Values still too low for 
normal basaltic sand

Orbit-track-aligned streaks 
due to seasonal variation 

and sparse coverage
J m-2 K-1 s-1/2 ≡ tiu
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a homogeneous 
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Values a bit high for 
normal basaltic sand
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for LS 80—200 

Putzig and Mellon 2007

TES 2PM 
thermal inertia

From individual 
temperatures fit to 
a homogeneous 
surface model

J m-2 K-1 s-1/2 ≡ tiu
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rock/icesanddust
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Orbit-track-aligned streaks 
due to seasonal variation 

and sparse coverage



Seasonal ranges are limited by seasonal CO2 deposits.
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mid-latitudes

Direction of 
heat transfer depends 

on time of day and season



At Phoenix: TES thermal inertia fits 
a layered model of sand over rock/ice

sand

rock or ice
~4 cm

}

2AM

2PM

＋, ╳ TES

sand

1.1 cm

2.2 cm

4.4 cm

1.1 cm

2.2 cm
4.4 cm
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Compare to 
lander-

observed 
average 
depth to 

ground ice: 
4 cm

Putzig and Mellon (2007)



In the erg: TES thermal inertia fits a 
layered model of sand over rock/ice

sand

rock or ice
~20 cm

}
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cf. Titus and 
Cushing 
(2010) 

estimates of 
upper-layer 
thickness of 
~5–20 cm.2AM

2PM＋, ╳ TES

sand

8.8 cm
17.5 cm

35 cm

35 cm

17.5 cm
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dust

dust
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In the erg: TES thermal inertia does 
not fit models of dust over rock/ice
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Seasonal 
changes for 
the model 
are much 

larger than 
those from 

TES



2AM

2PM

＋, ╳ TES

dust

In the erg: TES thermal inertia does 
not fit models of horizontal mixtures
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Relative 
behavior of 
2AM and 

2PM curves 
is different

mixture of dust 
and rock or ice



HiRISE image study:
Quantify slope orientations and angles
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Crest tracing example
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4 Thermal modeling example

Bowers and Putzig (2011 LPSC)



Section of HiRISE image 
PSP_001432_2610 
showing dune crests 
and inter-dune deposits 
within Olympia Undae. 
Bowers & Putzig (2011).

Crestlines are consistently oriented.
Light-toned materials typically occupy < 6% area.
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With HiRISE orientations and lower 
bounds on slope (2°,3°) from MOLA data:

Bowers & Putzig (2011)
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At location of HiRISE image PSP_009764_2600

Considering typical angles of repose 
for likely dune-forming materials:

Sense of 
2AM and 

2PM curves 
is opposite 

between TES 
and models

Slope is 
not a 

dominant 
factor
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This just in... 
from your friendly local USGS (Redding and Herkenhoff): 

Olympia Undae 
DEM from a 

HiRISE image pair

To be 
incorporated into 
our slope analysis 

imminently!
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Earlier THEMIS results (Putzig et al. 2010 LPSC)
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LS = 0, at equator LS = 140, at 80°N

Dawn and dusk 
yield non-unique 

solutions for I
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02:00 14:00 ⇐ nom. TES obs times03:00 13:00

Modeled Martian temperature

THEMIS local times



Model  T at various seasons

THEMIS 
local times

29-30+

Most 
favorable 
season

 CO2 
freezing

29-30+

MY30 AM THEMIS 
imaging:171-182

MY
MY

Ls = 151 Ls = 173

Ls = 112 Ls = 131
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J m-2 K-1 s-1/2 ≡ tiu
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THEMIS MY30 AM thermal inertia
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J m-2 K-1 s-1/2 ≡ tiu
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Conclusions
Diurnal and seasonal variations in TES apparent 
thermal inertia are indicative of a heterogenous 
surface in Olympia Undae.

Our analysis of thermal inertia from TES: 

- strongly supports normal sand-sized materials at 
the surface of erg, likely overlying an ice-cemented 
substrate.

- discounts the contribution of slopes and horizontal 
mixtures of materials to the thermal behavior. 

Better seasonal coverage of AM observations will 
increase the usefulness of THEMIS in evaluating the 
thermal behavior of the erg.
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