SHARAD Observations of Recent Geologic Features on Mars

Than Putzig,¹ Roger Phillips,¹ Jack Holt,² Isaac Smith,² Lynn Carter,³ and Roberto Seu⁴

¹Southwest Research Institute, Boulder, Colorado, USA
 ²University of Texas, Austin, Texas, USA
 ³Goddard Space Flight Center, Greenbelt, Maryland, USA
 ⁴Sapienza University of Rome "La Sapienza," Rome, Italy

EPSC-DPS 2011

Image credit: NASA/JPL

Outline

- Overview of SHARAD instrument and its results
- **Planum Boreum:** H₂O ice layers and structures
- Planum Australe: Discovery of a large CO₂ ice deposit in the near subsurface
- Mid-latitudes: Detections below lobate debris aprons, volcanics, and sedimentary layers
- Conclusions and Acknowledgments

MRO's Shallow Radar sounder

Primary Objective Map subsurface dielectric interfaces and interpret them in terms of the occurrence and distribution of expected materials, including rock, regolith, water, and ice.

* Along-track resolution is improved using synthetic aperture radar (SAR) processing techniques

O = pedestal craters (Nunes et al., 2011)

Basemap: NASA/MOLA Science Team

- Packet structure is found throughout the NPLD
- Basal Unit is rarely layered, occasionally seen below Olympia Planum, mostly missing beneath Gemina Lingula

◆ Flat basal boundary has ~ 0 flexure ♀ very low heat flow

Correlation of radar units to climate cycles

NPLD stratigraphic complexity Unconformities: erosion and depositional variations

- Holt et al. (4th Mars Atmos. Wksp. 2011)
- Thickness variations may reflect locally variable deposition rates.
- Eastern paleo-chasma was completely infilled by later deposition.
- Shallow unconformity likely a major erosional surface.

Trough migration paths

- Analysis of SHARAD data shows that troughs are active, migrating bedforms of H₂O ice.
- Katabatic winds erode ice from lee slopes and deposit it on stoss slopes, resulting in layers that are thickest just downwind of the troughs.
- Surface imagery suggests that active migration occurs from spring into early summer, when CO2 frost is gone and winds are strongest.

Smith and Holt (Nature 2010)

Image width ~22 km

THEMIS VIS V12295001

500 m

200

Mars Polar Radar Stratigraphy

Planum Boreum: Image is ~1700-m section of NPLD radar stratigraphy in Gemina Lingula, showing packet/interpacket structure. **Well-defined radar layering is pervasive**. Planum Australe: Image is ~800-m section of SPLD radar stratigraphy in Promethei Lingula. Well-defined radar layering is <u>rare</u>. Peculiar reflectionfree zones occur near surface.

Phillips et al. (Science 2008)

Correlations and Offsets of Reflectors

Phillips et al. (Science 2011)

Geologic unit AA₃

- •SPRC ($AA_{4a}+AA_{4b}$) overlies AA_3 , which occurs only at SPLD summit and unconformably overlies older units.
- •Small troughs and isolated pits cut into AA₃ show evidence of collapse, suggestive of sublimation of volatiles mostly likely CO₂.

Geologic Map

Troughs in AA₃ (~87°S, ~268°E)

RFZ₃ coincides with geologic unit AA₃

- •SPRC ($AA_{4a}+AA_{4b}$) overlies AA_3 , which occurs only at SPLD summit and unconformably overlies older units.
- Small troughs and isolated pits cut into AA₃ show evidence of collapse, suggestive of sublimation of volatiles mostly likely CO₂.
 RFZ3 falls predominantly within the mapped bounds of AA₃.

RFZ₃ coincides with geologic unit AA₃

Extrapolated RFZ₃ volume is 30× SPRC and equates to 4–5 mbar (~80% of present value of 6–7 mbar). If sublimated at high obliquity (e.g., ~0.6 Ma), initial GCM modeling suggests that:
Surface liquid water would likely be stable many more places.
More frequent and intense dust storms are likely.

Lobate Debris Aprons

Morphology suggests ice as a component, but amount is debated. End members:

- ~ 10%: ice-lubricated debris flow
- ~ 95%: debris-covered glaciers

Deuteronilus Mensae

Eastern Hellas region

See Holt et al. (Science 2008)

Plaut et al. (GRL 2009; LPSC 2010)

Non-Ice Targets 1. SHARAD shows that Cerberus Palus is not a Frozen Sea

Histogram of **estimated loss tangent** over Cerberus Palus. Most values are > 0.1, and thus **incompatible with pure or dirty ice** in the subsurface.

Orosei et al. (EPSC 2010)

Non-Ice Targets 2. Amazonis Planitia **3. Medusae Fossae**

Elevation (m)

Conclusions

- **Planum Boreum:** H₂O ice layers and structures shed light on heat flow, climate cycles, & recent processes.
- **Planum Australe:** Newfound CO₂ ice deposit may indicate a recent near-doubling of surface pressure.
- Mid-latitudes: LDAs are revealed as debris-covered glaciers. Constraining pyroclastics, lava, and sediments helps assess the roles volcanism and fluvial activity.
- All of these features and their evolution over time are closely tied to the climate history of Mars.

Acknowledgments

Thanks to NASA, ASI (Italian Space Agency), the MRO Project, and the SHARAD Team.

extra slides

How 'bout them other RFZs?

When was the ice emplaced?

Modified from Head et al. (2003)

SHARAD results strongly support debris-covered glacier hypothesis Eastern Hellas

NPLD Troughs

Length (km) 229 Average thickness (m) 27 Area km² 6.184

Communication between troughs is minimal

Along Track (km)

NPLD Troughs

HRSC: H5741_0000_ND3

MY 29 L_s = 88.0

~300 km

NPLD Troughs